
Department of Physics, Engineering Physics &

Astronomy

PHYS 455 - Engineering Physics Design Project

Design and Control of a Double Inverted

Pendulum

Authors:

Beattie, W.

Esche, M.

Fox, A.

Georgas, P.

Simpson, J.

Submitted To:

Dr. J. Morelli

Dr. K. Robbie

April 12th, 2010



We would like to extend our gratitude towards Chuck Hearns, Gary Contant, Steve Gillen,
Bernie Ziomkowitz, Abdol-Reza Mansouri, and our TA Greg Demand. This project would
not have been possible without their patience and help.



Abstract

This report constitutes the culmination of a multi-month design project to design
and stabilize a double-inverted pendulum system. We begin by motivating the problem
and presenting the mathematical the theoretical tools needed to achieve the goal. The
mechanical, electrical, and software design components are outlined, along with the
relevant safety protocols. We describe the characterization of our set-up, present
results, and put forward recommendations for future work.
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1 Introduction, Motivation & Objectives

The Double Inverted Pendulum (DIP) control problem is a natural extension of the clas-
sical inverted pendulum scenario. Such systems have been thoroughly investigated in the
literature, and typically involve an actuated cart or mobile platform constrained to move
in one dimension. A freely swinging pendulum link is attached to the cart, with a second
freely swinging pendulum attached to the end of the first pendulum such that the motion
of both pendulums is confined to a single plane in line with the motion of the cart. This
setup is displayed in Figure 1 below.

Figure 1: Typical double inverted pendulum system

The underactuated DIP system is commonly used as a benchmark and testing ground for
control algorithms due to its highly unstable internal dynamics. The primary objective of
this project was to stabilize the DIP system shown in Figure 1 about its upward, unstable
equilibrium position. This was accomplished using a closed loop control algorithm with
first and second joint angles and cart position as inputs and the force applied to the
actuated cart as the output. In other words, the motion of the cart is used to control the
angle and motion of the lower pendulum such that control of the upper pendulum can be
achieved by further motion of the cart. The specifics of the control algorithm are discussed
in Section 3.

1. The closed loop system should be stable about the fully upright equilibrium position.

2. The steady state error in the angles of each pendulum joint should be zero within
the accuracy of the measurement device.

3. The step response of the cart position to a setpoint of 30 cm from the zero position
should have a settling time of less than 10 seconds.

4. The overshoot of the cart position step response should not be greater than 20% of
the value of the step.



2 Modeling

A schematic of mechanical system is depicted in Figure 1. The mathematical modeling
of this system is unpleasant to display and can be found in Appendix D. Although we do
not explicitly develop the analogous equations for a single inverted pendulum on a cart in
this report, they follow from a similar procedure, and are ubiquitous in the mechanics and
control literature [Bradshaw, 1996].

3 Control Theory

We again refer the reader primarily to Appendix D for a detailed account of the control
theoretical ideas required for stabilization of this system. After consulting in person with
Professor Mansouri, a control theorist in the Math department, the group decided to use
a full-state observer for velocity estimation as opposed to a filtering or finite-difference
system. Here however, we primarily discuss design issues. There are several procedural
methods for placing the poles of state space systems. Here we will consider the use of the
Linear Quadratic Regulator (LQR) method [Astrom, 2008]. In this method, one supplies
relative weights of how important the control of each state variable is, and an algorithm is
then applied to calculate the necessary K matrix. This procedure (and indeed, controller
design in general) necessarily generates engineering trade-offs. In our case, we wish to
sacrifice cart position in exchange for angular stability.

The reader is referred to [Astrom, 2008] or [Lewis, 2003] for more control theoretic ideas,
and to [Khan et al., 2009], [Wang et al., 2010], or [Bradshaw, 1996] for inverted pendulum
details.

4 Apparatus

4.1 General Description

The apparatus consists primarily of a mechanical robot and electronics which power the
robot and communicate with the computer. Shown below in Figure 2 is an block diagram
showing the operation of the apparatus as it was used during the testing. An image of
the apparatus is shown in Figure 13 in the appendix. The double pendulum was actuated
by a rotational motor, coupled to a timing belt. The motor was powered using a bipolar
operational amplifier (BOP) which receives a control signal from MATLAB software on a
desktop personal computer. Additionally, the joint angles were measured using rotational
potentiometers. A third potentiometer was coupled to the axle of the motor, which allows
information on the position of the cart to be fed back to the computer. A power supply



was used in order to ensure a consistent and repeatable reference voltage in day to day
operation of the potentiometers. Finally, a third voltage source was required to power the
safety switch circuit which required a relay.

Figure 2: Block diagram for the operation of the apparatus

4.2 Mechanical Design

The first major design decision that was made was how the cart would be controlled.
Several options, such as driving the cart with an on-board motor, driving the cart with a
stationary motor at one end and a timing belt, or using a rotating arm under the small
angle regime. The latter option was the most logical choice for a few reasons. Primarily
the mass of the cart could be greatly reduced by avoiding having to move the motor. The
rotating arm was also undesirable since the arc through which the cart could travel and
stay in the linear regime was relatively small. The problem becomes much harder if the
nonlinear regime is considered. Having settled on a cart and timing belt, the next step
was to design a track to which the cart would be paired. It was felt necessary to purchase
a track and cart system in order to ensure the quality and therefore repeatability of what
was considered the part which required the most precision. With cost and size in mind, a
cart and track pair were purchased, as shown in the appendix in Figure 14.

The next design consideration was the timing belt. Several factors led to the choice to
use the helical timing belt shown in Figure 15. Normal rubber timing belts are subject to
slipping and with rapid changes in motor direction often undergo tensions which distort the
belt and compromise its integrity. The helical timing belt performs with less slip and far
less distortion, performance criteria that are critical to the functioning of the apparatus.
Additionally, a tensioning gear was used to both avoid the obstruction of the cart with
the timing belt passing over it as well as to vary the tension to find the optimal operating
conditions.



In order to obtain feedback from the apparatus, transducers had to be implemented which
performed different roles. The three outputs required were the position of the cart on
the track and the angles of both links with respect to the previous link. While options
such as ultrasonic position transducers and optical encoders were available to use, due to
the ease of use, cost, and availability rotary potentiometers were used. They have three
leads, two of which are connected to a reference voltage and the third is a voltage linearly
proportional to angular deviation. These provided 0.25 of accuracy, limited only by the
ability of the analog to digital converted we used.

The motor was selected as a recommendation from Professor Andrew Lewis, who has had
experience with motors for control labs run in the applied mathematics department.

For physical properties of the links (i.e. mass, moment of inertia, dimensions) and me-
chanical drawings of designed parts, see the appendix.

4.3 Electrical Design

A safety relay circuit was designed by that would kill power to the motor if the cart was
near the end of the track, or could by triggered manually. A relay was employed because
the motor draws a lot of current and the circuit only requires a small current to function,
contributing to the safety. The relay was powered by a voltage source.

In addition, a bipolar operational amplifier (BOP) was used to power the motor. A
small control signal could be output from MATLAB, and the BOP amplified the signal to
proved ample amperage to drive the motor. Finally another voltage source was used as
the reference voltage for the potentiometers.

4.4 Software Design

Matlab code was written to implement both the simulation and real time control of the
system. This code makes explicit use of the fast matrix multiplication available in Matlab,
and the real-time portion was coded to be as fast as possible to ensure no significant delay
in the control system. A sampling rate of approximately 250 Hz was achieved. It should
be noted that this in itself constitutes an engineering tradeoff, as a light-weight integration
code was selected over a more serious Runge-Kutta style algorithm.

5 Safety & Finances

The hazards associated with this experiment were mitigated through the use of hardware,
software and safety protocols. The two primary hazards were electric shock from the high



currents required to drive the DC motor which actuates the cart and impact from the
moving pendulum links.

In terms of hardware, to prevent electric shock the electrical components connected to the
motor were insulated and the apparatus itself was grounded. To prevent impact with the
pendulum, padded end stops were placed at the ends of the track to contain the cart and
prevent damage which could cause erratic behaviour. To keep the motor from running
the cart into these end stops, switches tripped by the cart were placed by the ends of the
track. These were part of a relay circuit that cut power to the motor when a switch was
tripped. This circuit also included two manual switches to both restore and cut motor
power. A circuit diagram is included in Appendix A. The control program also included
conditions which would stop the motor when the pendulum fell or when the cart reached
an end stop. A padded stick was used to manually stop the pendulum from swinging once
it had fallen and the apparatus was placed in an area that minimized access, preventing
injury.

In addition to these safety features, a set of protocols was created and posted around the
apparatus. The full protocols are included in Appendix C. The purpose of these protocols
was to minimize the risk to the operators of the apparatus.

The project was constrained to a budget of $500. While most of the experimental appara-
tus was borrowed or machined several components were purchased from online suppliers.
Expenditure details are shown in Figure 3 below. Original invoices for these orders are
available from science stores.

Figure 3: Project budget breakdown

The components above were purchased due to time constraints, lack of available equipment
and lack of machining expertise. Precise mechanical components were required to ensure
agreement between the modeled dynamics and the actual dynamics. The small active range
of joint angles required highly linear potentiometers to ensure measurement accuracy.



6 Experimentation & Characterization

A number of experiments were performed to characterize and parameterize the system and
its performance.

The moving components (the cart, links, attached components) needed to have their
masses, lengths, and moments of inertia characterized. The masses and lengths were
trivial measurements while the moments of inertia where determined by timing the period
length of small angle oscillations and substituting the value into the following formula
which also adjusts for the point of rotation

I =
T 2mgl

4π2
−ml2. (1)

Another important consideration was determining whether the friction associated with the
track was viscous or Coulombic friction as it would effect the derivation of the equations
as well as the type of coefficient used. Experiments were performed by lifting the track
and plotting the position as a function of time and it was determined that dry friction was
the main source from the track. An appropriate static friction coefficient was determined
while the kinetic friction coefficient is taken into account in the following voltage to force
calibration.

The most important calibration was to determine how what force on the cart would result
from the varying control voltage output by the computer. After initial testing to determine
appropriate amplification levels, an experiment was performed to determine the control
voltage to force calibration. This was done by placing the cart on one side of the track
and applying a constant control voltage to have the motor move the cart from one side
to the other. This was repeated in both directions for varying control voltages. The
position of the cart was then plotted against time and doubly differentiated to acquire the
acceleration, or equivalently by knowing the mass of the components, the force. The results
of this experiment are shown in Figure 4. As one can see there is a significant dead zone
for which the control voltage does not cause the motor to operate. Also, the calibrations
are different in the two different directions which is logical due to the asymmetry of the
apparatus setup.

7 Results & Analysis

The behaviour of the SIP and DIP were recorded through state measurements. The SIP
was of secondary focus and the results are presented in Appendix A accordingly. Figure 5
below shows the behaviour of the DIP for a 30cm step response. The simulated result is
shown in Figure 6 below.



Figure 4: Calibration of the Control Voltage to the Output Motor Force

An immediate qualitative observation is the correlation between θ1 and θ2. The controller
works to force the two angles in phase. This behaviour is observed in the simulation as
well. This can be understood by considering the requirements for translation. If the two
angles were out of phase trying to move the pendulum would cause the links to fold at the
second joint. An overshoot of 37.8 cm was observed. System memory was exhausted before
stable oscillations could be reached but the settling time is greater than 30 s. In contrast
simulation of the same controller under an identical step response yields an overshoot of
5.5 cm and a settling time of 5.2 s. The difference between simulation and results is very
large and is discussed in further detail in Appendix A with the SIP results. Given the
instability of the equilibrium, small errors in measurement and output can result in large
instabilities.

8 Discussion & Recommendations

The successes and failures attributable to the project are easily identifiable. The con-
trols developed by the team were certainly adequate and sophisticated enough to achieve
stability in the double inverted pendulum system. The difficulty in the problem results
from inherent problems with modeling any dynamic system. Some factors are not fully
accounted for, and this requires extensive tuning of the system in almost all circumstances.

The biggest problem encountered by the team was the behavior of the cart and track
system. It was felt that these parts would be too difficult to machine, and thus they
were purchased under the assumption that they would behave ideally. Due to budget
constraints, a track and cart were selected that moved by sliding rather than rolling. The



Figure 5: DIP step response experimental performance. Initial conditions x=27.9 cm, ?1
= 0.01 rad, ?2 = -0.04 rad. Gains used: Ke=[0.18,-1,2,0.15,0.06,0.2628,0.01]*50 . The
system is stable to the step but equilibrium oscillations were not reached before system
memory was exhausted.

effect was that the cart did not pair ideally to the cart. This meant that the friction profile
on the track was not only irregular but occasionally random, since the cart occasionally
would bite the track and therefore not respond to the input signals.

Thus, improvements in the experimental apparatus would begin with replacing the track
and cart system with a rolling cart. This should lead to not only less friction, but a
much more uniform friction along the whole of the track. This would greatly simplify the
dynamic modeling and the control system could be reevaluated with this better apparatus.

9 Conclusions

The report details each element of the DIP design process. Concept formulation, system
modeling, apparatus and design, controller synthesis, experimentation and analysis were
all explored by the group. Results from model simulations were used to drive the de-
sign parameters for the mechanical system and actuators. The controller was designed
to minimize steady state oscillations and to produce the best possible step response char-
acteristics. Safety concerns were met with appropriate protocol and redundant forms of
emergency stops. The system was constructed and assembled by the group in the lab



Figure 6: Step response of the DIP Gains used: Ke=[0.18,-1,2,0.15,0.06,0.2628,0.01]*50.

setting with minimal additional purchases required. The completed apparatus was char-
acterized by a set of mini-experiments to measure needed parameters and tune the model.

Ultimately a design was reached that satisfied the budget, time, and stability constraints
of the project but failed to meet the settling time and overshoot objectives initially laid
out. The best DIP 30 cm step response achieved a 37.8 cm overshoot and a settling time
of over 30 s, greater than the initial goal of 6 cm and 10 s. The results obtained were not
consistent with the predictions from simulation due to measurement error and unmodeled
system dynamics. The group believes that further refinements of mechanical components
and tuning of the controller could improve the performance characteristics of the DIP to
within the target range. Further problems like swing up or stabilization of other unstable
DIP equilibrium remain as more difficult challenges for future work.



10 Appendix A - Detailed Results

As an intermediate step in stabilizing the DIP the group ran a set of experiments on the
SIP using a similar controller. The results of varying step responses in position and link
angle are shown in Figure 7 and Figure 8 below

Figure 7: Response of the SIP to a variety of angular steps. Response parameters for each
trial are recorded in the table. The final step resulted in failure to stabilize

Figure 8: Response of the SIP to a variety of angular steps. Response parameters for each
trial are recorded in the table. The final step resulted in failure to stabilize

No step responses achieved absolute convergence to equilibrium as expected, but instead
oscillated about 6 cm. Trends in the step response data show increasing convergence time
and overshoot with increasing step magnitude. A range of stabilizable steps is also estab-
lished. The system is found to converge for position steps of 33 cm and 22o. The SIP
simulations predict a stability range of 29 cm and 17o.

Substantial disagreement was observed between simulation and measurement in the DIP.
Measurement and output error are likely sources of the disagreement. This effect can be
studied by examining simulation results of the SIP with and without error. Figure 9 shows
the expected behaviour of the SIP when subject to white measurement noise. Figure 10
shows the expected behaviour of the SIP when subject to a zero position calibration error.



Figure 9: Simulated response of the SIP to a 10 cm step. Angle and position measurements
are subjected to a white noise with standard deviations of 0.50 and 3 cm

While the offset does not produce the steady state oscillations observed in practise the
white noise on measurement does produce a pattern consistent with the behaviour seen in
lab. Figure 11 shows the measured data for a 10.8 cm step below for comparison.

The magnitude of oscillations seen in practise is greater than those seen in simulation for
generous measurement errors. Inconsistencies in the track and motor, while difficult to
quantify or estimate, also contribute to steady state oscillations and can be used to explain
the discrepancy.

11 Appendix B - Additional Design Pictures



Figure 10: Simulated response of the SIP to a 10 cm step. The angle measurement is
subject to a hard offset of 100



Figure 11: Response of the SIP to a 10.8 cm step. Steady state oscillations of 6cm are
observed



Figure 12: Relay circuit to interrupt motor power

Figure 13: The experimental apparatus in functioning form with the double pendulum
linkages



Figure 14: The track and cart pair used in experimental apparatus

Figure 15: The helical timing belt used to translate the rotational motion of the motor to
the translational motion of the cart



12 Appendix B2 - Mechanical Drawings































13 Appendix C - Safety Protocols

When Beginning Operation

• Inspect apparatus for damage and ensure all safety features are operational

During Operation

• No one is to stand in plane of pendulum during testing or operation

• Area around apparatus must be cleared of all objects

• No one is to directly touch apparatus when in operation except as necessary to
operate

During Work on Apparatus

• Power to motors and sensors must be off when working on and around apparatus

• No one is to work alone when in lab or machine shop

• Machine shop safety rules must be followed

When Leaving Apparatus

• Ensure all power sources are off

• Ensure control program has exited

In Case of Injury

• Cut power to apparatus/machines in use

• Help injured person get medical attention if necessary

• Report injury to lab/machine shop supervisors once situation is under control

14 Appendix D - Task Breakdown

Will Beattie Treasurer

• Chief equipment procurer. Responsible for all orders.

• Lead communications officer. Responsible for all computer input/output pro-
cedures and sensor calibration.

Martin Esche Safety Officer

• Design and integration of home-made mechanical components.

• Assistant in construction of home-made mechanical components.

Andrew Fox Secretary



• Lead electrical engineer. Design and integration of additional analog electronics.

• Primary CAD specialist, responsible for generating relevant part drawings.

Peter Georgas Equipment Officer

• Lead in construction of mechanical components.

• Integration of sensors with mechanical components.

John Simpson Team Leader

• Lead control engineer. Responsible for flexible modeling and programming of
control algorithms.

15 Appendix E - System Parameters & MATLAB Code

m0 0.393 kg Mass of cart
m1 0.215 kg Mass of first link
m2 0.130 kg Mass of second link
l1 0.145 m Distance from first revolute joint to first CM
l2 0.134 m Distance from second revolute joint to second CM
L1 0.307 m Pivot-to-pivot distance of first link
I1 0.0032 kg m2 CM moment of inertia of first link
I2 0.0025 kg m2 CM moment of inertia of second link
g 9.81 N/kg Gravitational constant

function DoublePendulum

%-------------------------------------------------

%Set up analog input for pots

ai = analoginput(’nidaq’,’Dev1’);

inchan = addchannel(ai,[0,1,2],[’Motor’,’T1’,’T2’]); %Open Channel 1

set(ai,’SampleRate’,10000)

set(ai,’SamplesPerTrigger’,2);

%Set up analog output to BOP

ao = analogoutput(’nidaq’,’Dev1’);

outchan = addchannel(ao,1,’Output’);

putsample(ao,0.0);



set(ao,’TriggerType’,’Manual’);

set(ao,’TransferMode’,’Interrupts’);

%------------------------------------------------

%Define material parameters

g=9.81;

m0=0.393; %Cart Mass

m1=.215; %First Link Mass

m2=.130; %Second Link mass

l1=.145; %First link distance from pivot to CM

l2=0.134; %Second link distance from pivot to CM

L1=0.307; %Lengths of first pendulum from end to end

I1=(10/10)^2*m1*g*l1/4/pi^2 - m1*l1^2; %Calculate I_G1

I2=(5.28/5)^2*m2*g*l2/4/pi^2 - m2*l2^2; %Calculate I_G2

cogradius=0.015;

%Define convenient parameters

d1 = m0+m1+m2;

d2 = m1*l1+m2*L1;

d3 = m2*l2;

d4 = m1*l1^2+m2*L1^2+I1;

d5 = m2*L1*l2;

d6 = m2*l2^2+I2;

f1 = (m1*l1+m2*L1)*g;

f2 = m2*l2*g;

%Build System Matricies

D = [d1,d2,d3;d2,d4,d5;d3,d5,d6];

iD = inv(D);

iDf = iD*[0,f1,f2]’;

A = [0,0,0,1,0,0;

0,0,0,0,1,0;

0,0,0,0,0,1;

0,iD(1,2)*f1,iD(1,3)*f2,0,0,0;

0,iD(2,2)*f1,iD(2,3)*f2,0,0,0;

0,iD(3,2)*f1,iD(3,3)*f2,0,0,0;

];

B = [0;0;0;iD*[1,0,0]’];



C = [1,0,0,0,0,0;

0,1,0,0,0,0;

0,0,1,0,0,0];

D=0;

%Create State Space System

sys = ss(A,B,C,D);

%Place Observer Gains

P = [-101,-100,-102,-103,-104,-105];

L = place(A’,C’,P)’;

%Add integral state

Ai = [A,zeros(6,1);1,zeros(1,6)];

Bi = [B;0];

%Define LQR Weights

R = 2;

Q = [1/.001^2,0,0,0,0,0,0; %x0

0,1/.001^2,0,0,0,0,0; %t1

0,0,1/.08^2,0,0,0,0; %t2

0,0,0,1/3^2,0,0,0; %x0dot

0,0,0,0,1/.2^2,0,0; %t1d0t

0,0,0,0,0,1/.4^2,0; %t2dot

0,0,0,0,0,0,1/.2^2]; %integral

%Calculate LQR Controller gains

[Ke,S,E] = lqr(Ai,Bi,Q,R);

K = Ke(1:6);

Ki = [Ke(7),0,0];

%Simulate System

T=0:0.01:20;

U=0.3*ones(size(T));

Ace = [A-B*K,B*K,-B*Ki;zeros(6,6),A-L*C,zeros(6,3);C,zeros(3,9)];

Bce = [zeros(1,12),-1,0,0]’;

Cce = [C, zeros(size(C)),zeros(3,3)];

Dce = [0];

sys_cl = ss(Ace,Bce,Cce,Dce);

[Y,T,X]=lsim(sys_cl,U,T,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);



%Plotting

subplot(2,1,1)

plot(T,X(:,1:3))

grid

xlim([0,10])

hold on

legend(’x’,’theta1’, ’theta2’)%, ’xd’, ’td’, ’t2d’)

plot(T,U,’--g’);

xlabel(’Time (s)’,’Interpreter’,’latex’,’FontSize’,14,...

’FontName’,’Arial’);

ylabel(’State Amplitude’,’Interpreter’,’latex’,...

’FontSize’,14,...

’FontName’,’Arial’);

title(’Step Response of Closed Loop DIP System’,...

’Interpreter’,’latex’,...

’FontSize’,16,...

’FontName’,’Arial’);

%Fundamental Calibration Numbers

%AmpsPerVolt = 1.6352; %Martin’s number

NMperAmp = 0.16;

AmpsPerVolt = 1.66; %My Number

coeff = cogradius/NMperAmp/AmpsPerVolt;

%Load Calibration

[V_Right,V_Left,V_Hang1,V_Invert1,V_Hang2,V_Invert2]=PotCalib;

poscal = .865/(V_Right-V_Left); %Convert voltage to position

anglecal1 = (pi-0)/(V_Hang1-V_Invert1); %Angle Calibration

anglecal2 = (pi-0)/(V_Hang2-V_Invert2); %Second Angle Calibration

%Initial variables

%expr=zeros(10000,11);

%Read initial positions



y = mean([getsample(ai);getsample(ai);getsample(ai);

getsample(ai);getsample(ai);getsample(ai);getsample(ai)]);

y(1) = -.45 + poscal*(y(1)-V_Left); %Convert Motor Pot to Position

y(2) = (0 + (y(2)-V_Invert1)*anglecal1); %Convert Link Pot to Angle (radians)

y(2) = y(2); %THIS IS THE LINE WITH THE MINUS

y(3) = (0 + (y(3)-V_Invert2)*anglecal2);

y(3) = y(2)+y(3);

rad2deg(y)

xe=0; %Set integral state to zero

j=0; %Indexs saved data

t=0; %Time (i) variable

t_old = 0; %TIme (i-1) variable

stop=1; %Stopper variable

xhat = [y(1),y(2),y(3),0,0,0]’;

%xhat = [-.05,0,0,0,0,0];

r=0; %Reference value for position

y=[0,0,0]; %Reset measurements

tic

while y(1) > -.45 && y(1) < .4 && abs(y(2)) < deg2rad(80),

%While on the track, while pendulum hasn’t fallen over

%Read measurements

y = mean([getsample(ai);getsample(ai);getsample(ai);

getsample(ai);getsample(ai);getsample(ai);getsample(ai)]);

y(1) = -.45 + poscal*(y(1)-V_Left); \%Convert Motor Pot to Position

y(2) = (0 + (y(2)-V_Invert1)*anglecal1); \%Convert Link Pot to Angle (radians)

y(2) = -.02 + y(2); \%THIS IS THE LINE WITH THE MINUS deg2rad(.2)

y(3) = -.02 + (0 + (y(3)-V_Invert2)*anglecal2); \%deg2rad(.3)

y(3) = y(2)+y(3);

\%rad2deg(y)

\%Calculate control force

u = -K*xhat - Ke(7)*xe; \%Units of Force

\%Scale control force to output voltage

if(u > 0.1)

output = (u+2.37)/2.9225;



elseif(u < -.1)

output = (u-2.0116)/2.4;

else

output = 0;

end

\%Set saturation limit

if(abs(output) > 10)

output = sign(output)*10;

end

\%Output voltage

putsample(ao,output);

\%Integrate forward control equations

xhat = xhat + (t-t_old)*(A*xhat + B*u + L*(y’-C*xhat));

xe = xe + (t-t_old)*(y(1)-r);

\%Record data

j=j+1;

if(j<10001)

expr(j,:)=[t,y,u,output,xhat’];

else

stop=1;

end

t_old=t;

t=toc;

end

\%Set output to zero

putsample(ao,0.0);

\%Record Data

t = expr(:,1);

x0 = expr(:,2);

x1 = expr(:,3);

x2 = expr(:,4);

end



16 Appendix F - Theoretical Development

.

16.1 Derivation of System Equations

We let θ0 denote the linear position of the cart along the track, relative to an arbitrary
fixed reference, and we similarly denote the angular deviations of link 1 and link 2 from
the vertical by θ1 and θ2. The cart and links have respective masses m0, m1 and m2, and
the links have center of mass moment of inertias I1 and I2. We denote the distance from
the pivot of a respective link to its center of mass by l, and the pivot-to-pivot length by
L. The variable u is a force applied to the cart in the positive θ0 direction. It is this force
we will use for our control procedure.

We use a Lagrangian approach to deriving the equations of motion for the cart. We first
compute the kinetic energy of the system as

T =
1
2

[
m0||v0||2 + m1||v1||2 + m2||v2||2

]
+

1
2

(
IG1 θ̇1

2
+ IG2 θ̇2

2
)

where || · || denotes the Euclidian norm, mi ∈ R, IGi ∈ R, and

v0 =
d
dt

r0 =
d
dt

[θ0x̂]

v1 =
d
dt

r1 =
d
dt

[(θ0 + l1sin θ1)x̂ + (l1cos θ1)ŷ]

v2 =
d
dt

r2 =
d
dt

[(θ0 + L1 sin θ1 + l2 sin θ2)x̂ + (L1cos θ1 + l2sin θ2)ŷ]

The potential energy can be chosen to take the form

U = m1gl1cos θ1 + m2g(L1cos θ1 + l2 cos θ2)

with the final Lagrangian then being given by L = T − U , namely



L =
1
2

(m0 + m1 + m2) θ̇2
0 (2)

+
1
2
(m1l

2
1 + m2L

2
1 + I1)θ̇2

1 +
1
2
(m2l

2
2 + I2)θ̇2

2

+ (m1l1 + m2L1)cos(θ1)θ̇0θ̇1

+ m2l2cos(θ2)θ̇0θ̇2 + m2L1l1cos(θ1 − θ2)θ̇1θ̇2

− (m1l1 + m2L1)g cos(θ1)−m2l2g cos(θ2)

.

The Euler-Lagrange equations,

d
dt

(
∂L
∂θ̇i

)
− ∂L

∂θi
= uδ0,i

,

then yield the three nonlinear equations of motion for i ∈ {0, 1, 2}, given explicitly as

Γ =





u = d1θ̈0 + d2 cos(θ1)θ̈1 + d3 cos(θ2)θ̈2 − d2 sin(θ1)θ̇2
1 − d3 sin(θ2)θ̇2

2

0 = d2 cos(θ1)θ̈0 + d4θ̈1 + d5 cos(θ1 − θ2)θ̈2 + d5 sin(θ1 − θ2)θ̇2
2 − f1 sin(θ1)

0 = d3 cos(θ2)θ̈0 + d5 cos(θ1 − θ2)θ̈1 + d6θ̈2 − d5sin(θ1 − θ2)θ̇2
1 − f2 sin(θ2)




(3)

where the dj and fj depend only on physical system parameters and are defined in
[Bogadanov, 2004].

16.2 Control Theory

The system Γ represents a highly nonlinear set of coupled differential equations. For our
purposes, it is appropriate to work only within the linear regime defined by setting all
positions and velocities equal to zero 1. The linearizion of the system is accomplished by
Taylor expanding each nonlinear term in each equation and retaining only terms to first
order.

Under these conditions, one can recast the equations of motion in a standard form, referred
to as a Single-Input Multi-Output Linear Continuous-Time Invariant Control System. To

1Note that the cart position can be set arbitrarily to zero, since it is a cyclic coordinate of L



this end, we define the state vector of the system x(t) : R→ Rn as x(t) = [θ0 θ1 θ2 θ̇0 θ̇1 θ̇2]T .
The linearized system can then be rearranged into the form

ẋ(t) = Ax(t) + Bu(t) (4)

where A ∈ R6×6 and B ∈ R6×1 are matrices which depend only on the physical system
parameters. This first order system is now amenable to a vast array of analysis techniques.
The reader is referred to [Lewis, 2003] or [Astrom, 2008] for a detailed account of such
techniques. We will simply make use of the results without justification.

A useful concept for us is that of controllability. Intuitively, controllability refers to our
ability to access all of the system states using our input. For example, if one of the
equations is completely decoupled from the input, we will obviously have no way to access
and influence it, and it will evolve according to its own (possibly unstable) dynamics in
spite of our actions. One can show that if the controllability matrix, defined as

C(A, B) = [B | b |A2B | · · · |A5B]

is nonsingular, we are guaranteed that the (quite unstable) linearized system can be sta-
bilized by a state feedback law of the form u(t) = −KT x(t) for K ∈ R6×1. We note that
this is not simply “proportional control” as is common in PID controllers.

Equation 4 then becomes

ẋ(t) = (A−BKT )x(t)

One can show that the stability of the closed loop system then depends on the eigenvalues
of A−BKT . If spec(A−BKT ) ⊂ C−, we will have exponential decay of all states to zero,
and hence, upright stability. The well known pole placement theorem guarantees that we
can in turn choose a K that will accomplish this 2. A discussion revolving around the
choice of K can be found in the main report.

It is clear that the control procedure developed requires we have full knowledge of x(t) at
all times. When faced with the issue of measurement, we must recognize that we cannot
measure all of the state variables. We instead have access only to an output vector y ∈ Rp,
y = Cx for some n × p matrix C. A useful concept in this case is that of observability.
Intuitively, this refers to how good a look we can get at the state x from simply observing

2Specifically, the pole placement theorem guarantees that we can assign an arbitrary real, monic poly-
nomial to the characteristic polynomial of A−BKT .



the output y. For example, consider an Op-Amp adder system, adding two voltages V1

and V2 to produce Vout. We clearly will not be able to determine the time evolution of
both the input voltages simply from the output. It turns out that if the observability
matrix O(A,C), defined as

O(A, C) =




C

CA
...

CAn−1




is nonsingular, we can create a state observer which infers the full state from the vector y.
We need to get a bit creative here. Consider an estimated value of x, x̂, whose dynamics
are governed by

d
dt

x̂ = Ax̂ + Bu + L(y − Cx̂)

.

for some nonsingular matrix L of our choosing. Subtracting Equation 4 from this, we find
that the state error, e = x̂− x is governed by

ė = (A− LC)e

.

An appropriate choice of L will then guarantee that our estimated state vector converges
asymptotically to the true state. Note that we are free to choose L however we wish,
and are not confined by physical saturation of actuators or sensors. In the absence of an
advanced real-time filtering system to numerically differentiate the position measurements
to obtain velocities, this method provides an accurate way of estimating the full state.

In order to control the position of the cart, we introduce an integral state defined by
ẋi = θ0 − r for a reference position r of our choosing. This integral state will function
much like integral gain does in a PID controller, driving the system to the reference point
and producing zero steady-state error. Note that we can now simply recast our controller
as u(t) = −KT x(t)−Kixi = −K ′x′(t) for an extended state vector x′(t).
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